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Abstract: The long-distance effective field theory of our Universe — the Standard Model

coupled to gravity — has a unique 4D vacuum, but we show that it also has a land-

scape of lower-dimensional vacua, with the potential for moduli arising from vacuum and

Casimir energies. For minimal Majorana neutrino masses, we find a near-continuous in-

finity of AdS3×S1 vacua, with circumference ∼ 20 microns and AdS3 length 4 × 1025 m.

By AdS/CFT, there is a CFT2 of central charge c ∼ 1090 which contains the Standard

Model (and beyond) coupled to quantum gravity in this vacuum. Physics in these vacua

is the same as in ours for energies between 10−1 eV and 1048 GeV, so this CFT2 also de-

scribes all the physics of our vacuum in this energy range. We show that it is possible

to realize quantum-stabilized AdS vacua as near-horizon regions of new kinds of quantum

extremal black objects in the higher-dimensional space — near critical black strings in 4D,

near-critical black holes in 3D. The violation of the null-energy condition by the Casimir

energy is crucial for these horizons to exist, as has already been realized for analogous non-

extremal 3D black holes by Emparan, Fabbri and Kaloper. The new extremal 3D black

holes are particularly interesting — they are (meta)stable with an entropy independent of

ℏ and GN , so a microscopic counting of the entropy may be possible in the GN → 0 limit.

Our results suggest that it should be possible to realize the larger landscape of AdS vacua

in string theory as near-horizon geometries of new extremal black brane solutions.
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1. Preamble

M-theory is a unique theory with a unique 11-dimensional vacuum. However it also has

an enormous landscape of lower-dimensional vacua, which raises the thorny questions of

vacuum selection. The long distance effective theory of our world — the Standard Model

coupled to gravity — is an effective field theory in 4 dimensions, with some fixed micro-

physics, and also has a unique 4D vacuum. In this paper, we begin by showing that there

is also a Standard Model landscape, by exhibiting a near-continuous infinity of lower-

dimensional vacua of the theory. The simplest example is compactification on a circle,

where the potential for the radius modulus receives competing contributions from the tiny

cosmological constant, as well as the Casimir energies of the graviton, photon and, cru-

cially, the massive neutrinos. With Majorana neutrinos, whose masses are constrained by
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explaining the atmospheric and solar neutrino anomalies, we find an AdS3×S1 vacuum of

the theory with the circumference of the S1 at about ∼ 20 microns. With Dirac neutrinos,

both AdS3 as well as dS3 vacua are possible. Lower-dimensional vacua can exist as well.

These solutions exist completely independently of any UV completion of the theory at the

electroweak scale and beyond. Of course if string theory is correct and our 4D vacuum is

part of the theory, then the vacua we are describing are part of the string landscape as

well. While we focus on the Standard Model landscape here, such vacua would seem to

be generic in non-supersymmetric theories where the cosmological constant is fine-tuned

to be small.

The AdS3 vacua are particularly interesting: it is often thought that AdS/CFT can not

be used to describe quantum gravity in our world because we have a positive cosmological

constant. But this is not the case in these AdS3×S1 vacua! By AdS/CFT, there must be

some two-dimensional conformal field theory description of this background. Since the size

of the S1 is so large, all of conventional high-energy physics — the spectrum of leptons

and hadrons, electroweak symmetry breaking, whatever completes the Standard Model up

to the Planck scale, even very high energy scattering probing quantum gravity at energies

well above the Planck scale but beneath energies that would make a ∼ 20 micron sized

black-hole — is the same in this vacuum as in ours. Of course we can’t yet identify this

CFT, but it’s existence as the dual description of quantum gravity in a very close cousin

of our world is quite interesting.

After discussing the vacua, we turn to the interesting question of what physical pro-

cesses can connect or interpolate between them. We will see that there are novel ex-

tremal black holes and black strings which asymptote to the 4D vacua and realize the

lower-dimensional AdS vacua as their near-horizon geometries, in a way analogous to or-

dinary extremal charged black holes and branes that interpolate from Minkowski space to

AdSm×Sn vacua. What is interesting is that these are intrinsically quantum black objects

— such horizons can not exist classically due to familiar no-hair arguments which follow

from an energy momentum tensor satisfying the null energy condition. However the energy

conditions are violated by the Casimir energies, which play the crucial role in modulus sta-

bilization to begin with. Schwarzschild-type non-extremal quantum black holes supported

by Casimir energy have been studied recently by Emparan, Fabbri and Kaloper [1]; our

further contribution here is (A) to realize that these objects exist as solutions in the Stan-

dard Model and (B) to place them in a broader context, revealing also the extremal black

holes and their role as interpolators in the Standard Model landscape. These novel sorts

of black hole are very interesting and we will discuss a number of their properties. We will

also discuss some interpolations to the lower-dimensional dS vacua as well.

In the simplest case of the Standard Model AdS3×S1 vacuum the interpolating so-

lutions are cosmic strings. Smallness of the Casimir potential implies that the opening

angle is very small, so that such cosmic string cannot be present in the visible part of the

Universe. However, given that we live in de Sitter space, there is a (tiny) non-zero proba-

bility for a dS thermal fluctuation resulting in the creation of this object within our causal

patch. Note that this transition does not change the microscopic structure of the vacuum

at distances smaller than 20 microns, so that small enough observers — for instance, many
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of the Amoebozoa—are able to survive it and enter the lower-dimensional vacua.

It is interesting that the presence of some “negative” gravitational energy, violating the

null-energy condition, is a crucial part of all realistic modulus stabilization mechanisms;

in string theory a common source of the negative energies come from the negative-tension

orientifold planes, while in our Standard Model vacua it arises from Casimir energy. It is

natural to conjecture that all the AdS vacua in the larger string landscape can be thought

of as the near-horizon limits of “exotic” extremal black holes in 10 dimensions, with the

no-hair theorems being evaded by the negative energies needed for modulus stabilization.

If true, it would be interesting to probe these vacua from the “outside”.

2. The standard model landscape

We will now show that the action of the minimal Standard Model (SM) plus General

Relativity (GR) has more than one distinct vacuum, actually a true landscape of vacua.

Let us start considering the SM+GR action compactified on a circle of radius R. At

distances larger than R, there is an effective 3D theory with a metric parameterized by

ds2
(4) =

r2

R2
ds2

(3) + R2

(

dφ −
√

2

M4 r
Vµdxµ

)2

, (2.1)

where M4 is the 4D reduced Planck mass (1/
√

8πGN ), R is the radion field, Vµ is the

graviphoton, φ ∈ [0, 2π), and r is an arbitrary scale that we will later fix to the expectation

value of R. With such parameterization the effective action is already in the Einstein

frame, in particular, the reduction of the action for the pure gravitational sector reads

Sgrav =

∫

d3x dφ
√−g(4)

(

1

2
M2

4 R(4) − Λ4

)

→
∫

d3x
√−g(3) (2πr)

[

1

2
M2

4 R(3) −
1

4

R4

r4
VµνV µν − M2

4

(

∂R

R

)2

− r2Λ4

R2

]

,

where Λ4 is the 4D cosmological constant and Vµν is the field strength of the graviphoton.

Because of the 4D cosmological constant, the classical potential for the radion is runaway,

which makes the circle decompactify. Indeed this rolling solution is just the expanding 4D

de Sitter solution.

However, the smallness of the cosmological constant and the absence of other classical

contributions to the effective potential for the radion make quantum corrections important

for the study of the stabilization of the compact dimension. The 1-loop corrections to the

radion potential is the Casimir energy coming from loops wrapping the circle, which are

UV insensitive and calculable. The Casimir potential for a particle of mass m is ∝ e−2πmR

for R ≫ 1/m, so at any scale R, only particles with mass lighter than 1/R are relevant.

The contribution to the effective potential of a massless state (with periodic boundary

conditions) is

∓ n0

720π

r3

R6
, (2.2)
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ν > Λ4
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ν ∼ Λ4

m
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ν < Λ4

Figure 1: Radion potential around the neutrino-cosmological constant scale. The regions where the

cosmological constant, the massless bosons and the neutrino contributions dominate are indicated

with arrows. Depending on the neutrino spectrum the three plots show the three possible scenarios:

no vacua, dS and AdS vacuum.

where the sign ∓ is for bosons/fermions and n0 is the number of degrees of freedom (see

appendix A for details). The only massless particles (we know of!) in the SM are the

graviton and the photon. For very large radii the cosmological constant contribution wins

and the radion potential is runaway while for small radii the Casimir force wins and the

compact dimension start shrinking. We thus get a maximum for R = Rmax, with

Rmax =

(

1

120π2Λ4

) 1

4

, (2.3)

where we put n0 = 4 in eq. (2.2) (2 from the graviton + 2 from the photon) and which, for

the current value of the cosmological constant Λ4 ≃ 3.25 · 10−47 GeV4 [2], means Rmax ≃
14 microns.

If we start with a size R smaller than this critical value, the circle wants to shrink,

however, when the inverse size becomes comparable to the lightest massive particle, its

contribution to the effective potential is not suppressed anymore and can change the be-

havior of the potential. This is indeed what happens when 1/R approaches the neutrino

mass scale. The contribution of fermions to the Casimir energy is indeed opposite to that

of bosons and since the neutrino d.o.f. are at least 6 (for Majorana neutrino, 12 for Dirac)

at shorter scales their contribution eventually wins against that of bosons. Thus a local

minimum in general appears. However, since neutrino masses are of the same order as the

scale (2.3), the actual existence of the minimum can depend on the details of the neutrino

mass spectrum (see figure 1).

On S1 there is a discrete choice for the spin connection, which results in the choice of

periodic or antiperiodic boundary conditions for fermions. In the first case the contribution

has opposite sign with respect to that of bosons, while in the second case is the same. In
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Figure 2: Effective potential as a function of the radion field R, in the case of a) Majorana and

b) Dirac neutrinos for different choices of the lightest neutrino mass: mν1
=0 for Majorana, mν1

=6.5

(continuous black), 7.0 (dash-dotted green), 7.5 (long dashed blue), 8.0 (short dashed brown) and

8.5 (dotted red) meV, for Dirac neutrinos. The other neutrino masses (with normal hierarchy) have

been fixed with the current values for the mass splittings of eq. (2.4). In the plot the scale r has

been chosen so that 2πr=1 GeV−1.

order to have a minimum we thus need to impose periodic boundary conditions for the

neutrinos and have no more than 3 light fermionic d.o.f., where light here means lighter

than the scale of eq. (2.3). If these conditions are not met, the positive contributions from

the neutrinos start overwhelming the bosonic ones before the latter are able to develop a

maximum, and no minimum is developed as well.

We do not know yet the actual neutrino spectrum, nor whether neutrinos are Majorana

or Dirac particles. We only know the mass splittings for solar and atmospheric neutrino

oscillations [2],

∆m2
atm ≃ (1.9 ÷ 3.0) · 10−3 eV2 ,

∆m2
⊙ ≃ (8.0 ± 0.5) · 10−5 eV2 . (2.4)

If we call νi, with i = 1 . . . 3, the i-th mass eigenstate, such that mν1
< mν2

< mν3
, we have

two possibilities: (a) the normal hierarchy spectrum with ∆m2
12 = ∆m2

⊙, ∆m2
23 = ∆m2

atm,

(b) the inverted hierarchy spectrum with ∆m2
12 = ∆m2

atm, ∆m2
23 = ∆m2

⊙. From eq. (2.4)

it follows that even assuming mν1
= 0, independently of the hierarchy structure of the

neutrino mass spectrum, mν2
& 9 · 10−3 eV.

If neutrinos are Majorana particle, this means that no more than 2 d.o.f. can be lighter

than 1/(2πRmax). In this case we have necessarily a new Standard Model vacuum! The

effective potential at this minimum is always negative (figure 2a), therefore this vacuum

solution is AdS3×S1. The radion at the minimum (R0) is of order 1/mν , while both the

AdS3 length (ℓ3) and the radion mass (mR) are of order of the 4D Hubble scale (ℓ4). Just

to give some numbers, if, for example, we take mν1
= 0, m2

ν2
= ∆m2

⊙ and m2
ν3

= ∆m2
atm,
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we have

R0 ≃ 3.2µm ,

ℓ3 ≃ ℓ4/4 ≃ 3.7 · 1025 m ,

mR ≃ 6.5/ℓ3 ≃ 3.5 · 10−41 GeV .

If on the other hand, neutrinos are Dirac, then from eq. (2.4) we get an AdS3 minimum

only if the lighter neutrino mass mν1
is larger than ≈ 8.3 · 10−3 eV (normal hierarchy) or

≈ 3.1·10−3 eV (inverted hierarchy), a metastable dS3 minimum if mν1
≈ (7.1÷8.3)·10−3 eV

(normal hierarchy) or mν1
≈ (2.5 ÷ 3.1) · 10−3 eV (inverted hierarchy), and no stationary

point if mν1
. 7.1 · 10−3 eV (normal hierarchy) or mν1

. 2.5 · 10−3 eV (inverted hierarchy),

see figure 2b.

Depending on the neutrino vacua we can thus have a 3D vacuum with positive, zero

or negative cosmological constant. In either case the natural value for the effective vacuum

energy will be

Λ3 ∼ m3
ν ≈ Λ4R0 . (2.5)

In the case of positive Λ3 we have a 3D dS vacuum. It is interesting to compare the entropy

S3 associated to the dS3 horizon with the 4D one (S4). We thus have

S3 =
M3

H3
∼ M3

4 R3
0 ≈ mν

M4
S4 ,

which is much smaller than the 4D dS entropy. In principle, one could also have S3 > S4,

since in the limit Λ3 → 0 S3 → ∞, however, one would need Λ3 to be suppressed with

respect to its natural value in eq. (2.5) by a factor of m2
ν/M

2
4 , which turns into a 10−60

tuning on the neutrino masses.

Let us stress again that the above analysis depends entirely on IR physics and is inde-

pendent of UV details, indeed the first non vanishing corrections at one loop would come

from the electron (the next lightest state) wrapping around the circle; this contribution is

suppressed by e−2πmeR0 ∼ e−me/mν ! The calculation is also stable with respect to higher

loop corrections, which are small as long as the 4D couplings are perturbative.

The presence and the properties of the neutrino vacuum are very sensitive to both

the value of the cosmological constant and the neutrino spectra (see figure 2 and 3). If

the cosmological constant had been natural, of order of the Planck or some other high

scale, quantum effects would have been negligible at low energies and would have not

been able to produce any vacuum. Indeed, just increasing the value of the cosmological

constant by an order of magnitude, would be enough to eliminate the presence of the 3D

vacuum. Analogously, as shown in figure 3, it is enough to decrease the mass of the second

lightest neutrino just by a factor of 3, which means a factor 9 in ∆m2
⊙, to destroy the

Majorana-neutrino vacuum (for normal hierarchy).

Stabilization of higher dimensional vacua by Casimir energy has been often considered

in the literature in a variety of models, starting from ref. [3]. It is amusing that the

Standard Model itself seems to have the right low energy spectrum to allow for stable

lower dimensional vacua.

– 6 –



J
H
E
P
0
6
(
2
0
0
7
)
0
7
8

0 5´1010 1´1011 1.5´1011 2´1011

-1´10-70

0

1´10-70

2´10-70

3´10-70

4´10-70

5´10-70

6´10-70

R (GeV−1)

V
(R

)
(G

eV
3
)

Figure 3: Sensitivity of the Majorana neutrino vacuum to ∆m2

⊙. The plot shows the radion

potential for different values of ∆m2

12
= ∆m2

⊙: ∆m2

⊙=8.0 (dotted red, current value), 2.0 (short

dashed brown), 1.5 (long dashed blue), 1.2 (dot-dashed green) and 1.0 (continuous black) · 10−5 eV.

The lightest neutrino mass has been fixed to zero. In the plot the scale r has been chosen so that

2π r=1 GeV−1.

2.1 A near moduli space

Besides the radion there is another modulus in the compactified 3D action: the longitudinal

polarization of the photon Aφ. Classically, because of gauge invariance, this field is massless.

However, at the quantum level, the mass of this field in general gets corrections that depend

on the gauge invariant (Wilson loop) combination:

W = exp

(

i

∮

S1

A

)

.

These corrections are generated at one loop by charged fields wrapping S1. They can be

easily calculated by noticing that, via a gauge transformation, the Wilson loop can be

reabsorbed into a non-trivial boundary condition for the charged field. Since a change

of the boundary condition will change the contribution of a field to the energy density,

this produce a non trivial potential also for Aφ (see e.g. [4]). The explicit formula for the

potential for R and Aφ can be found in the appendix A (eq. (B.1)).

In general charged fermions want to stabilize the Wilson loop around Aφ = 1/2 while

charged bosons around Aφ = 0. In our case the first contribution comes from the electron,

it produces a cosine-like potential that stabilizes the Wilson loop around Aφ = 1/2. There

are thus two stationary points, a minimum around Aφ = 1/2 and a maximum around

Aφ = 0. According to [5] both are stable in AdS.

However, because the electron is very heavy compared to our scale, its contribution is

exponentially suppressed by a factor of order e−me/mν ∼ e−108

! Because of the smallness

of this contribution one may worry whether other would-be subleading corrections may be

important. For instance, at higher loop order there are contributions to the effective action

with the photon going around the loop. Such corrections are power like and, although
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subleading in αem, might nevertheless be important. It is easy to show, however, that such

corrections do not generate a potential for Aφ at any order in perturbation theory. Indeed,

as long as R ≫ m−1
e , we can integrate out the electron and use the Euler-Heisenberg

effective action. In this effective theory there are no minimally coupled particles, all fields

are gauge invariant so that the photon possesses an exact shift symmetry that protect

it from mass terms at all order in the energy expansion. The perturbative expansion is

accurate up to non-perturbative corrections in E/me of order e−me/E ∼ e−2π meR0 , which

is of the same order of the contribution from the electron.

Therefore the potential for Aφ is effectively flat, in the sense that starting from any

value of W it would take an exponentially long time (say in the AdS3 length units) to

move to the minimum. In this sense the neutrino-vacuum is not unique, effectively there is

a continuum of distinct vacua labeled by different values of W . Strikingly enough we see

that the Standard Model, although non-supersymmetric, possesses a near moduli space.

The phenomenon that a unique action may give rise to an infinite number of vacua is not a

special feature of Superstring/SUSY theories, it is also a feature of the minimal Standard

Model!

2.2 More vacua

Our analysis in the previous sections was restricted to the simplest Standard Model on a

micron sized circle. However, it is natural to expect that there are more vacua. For instance,

for smaller size of the circle, more SM states start contributing to the Casimir energy, when

bosons and fermions contributions compensate each other, the radion potential can develop

a stationary point. The analysis is reported in appendix B.1; apart for a saddle point at the

electron scale no new stationary point is present until R ∼ Λ−1
QCD. The study of the radion

potential around the QCD scale would require a non-perturbative analysis. Above this

scale, the theory becomes perturbative again. We give the general formula for the effective

potential in appendix B.1 but we do not attempt to address the stabilization problem since

now the structure of the potential is complicated by the presence of more Wilson loop

moduli from gluons and at still shorter distances from electroweak bosons. Extensions of

the Standard Model can also affect the Casimir potential, creating new vacua or removing

the existing ones. For example the presence of light bosonic fields, like the QCD axion, or

extra-dimensional light moduli may favor the presence of the micron vacuum in the case of

Dirac neutrinos, while very light fermions, like goldstinos, gravitinos or sterile neutrinos,

would tend to destroy such vacuum. Another example is supersymmetry at the TeV scale,

which would even the number of bosonic and fermionic d.o.f. and give room to the presence

of new vacua at that scale. We comment on some of these possibilities in the appendix B.2.

Another possibility is to compactify more than one dimension. We summarize here the

main features of such lower-dimensional vacua, and refer the reader to the appendix (B.3

and B.4) for a detailed analysis. If we compactify two of the spatial dimensions, at low

energies the system is well described by a 2D effective theory containing gravity and a

set of scalar fields that parameterize the overall size and shape of the manifold we are

compactifying on. For instance if we compactify on a two-torus, beside gravity the 2D

theory contains the area field A and the complex modulus τ = τ1+iτ2. The analysis of this

– 8 –
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system is subtler than in the usual case of toroidal compactifications in higher-dimensional

models, for in our low-dimensional setups several degrees of freedom are not dynamical.

Gravity itself is not dynamical in 2D, neither is the area A. Their equations of motion

are constraint equations that fix, respectively, the total energy and the two-dimensional

curvature. More precisely, if there is a two-dimensional potential energy density V (A, τ)

coming from the 4D cosmological constant, the Casimir energy of light 4D fields, and

possibly other sources, then the 2D vacua are characterized by a vanishing potential V = 0

and a curvature R(2) = ∂AV . On the other hand τ is dynamical, so in order for a 2D

vacuum to be stable it should correspond to a minimum of the potential V along the τ1,2

directions. We did not attempt a detailed analysis of the 2D potential in the Standard

Model in order to find configurations (A0, τ0) meeting the above conditions.

The ultimate possibility is compactifying all three spatial dimensions. The resulting

theory is a 1D effective theory — quantum mechanics. At low energies the degrees of

freedom are the overall size of the compact manifold a(t) and the shape moduli which we

collectively denote by Φ(t). The system is described by a mechanical Lagrangian

L =
1

2
M2

4

[

− 6 ȧ2a + a3 Φ̇ · K(Φ)Φ̇
]

− V (a,Φ) , (2.6)

supplemented by the constraint that the total Hamiltonian vanishes, H = 0, the so-called

Hamiltonian constraint. In the Lagrangian above K(Φ) is a positive definite matrix, while

a(t) enters with a negative definite kinetic energy. Notice that in all previous cases by

‘vacua’ we meant compactified solutions with maximal symmetry (de Sitter, Minkowski, or

Anti-de Sitter) in lower dimensions, whereas here in the 1D theory all “fields” only depend

on time, and the only sensible definition of a vacuum seems to be ‘a time-independent

solution’. However the Hamiltonian constraint makes it impossible for such a solution to

exist, unless a perfect tuning is realized in the potential—V should have a stationary point

at which V itself exactly vanishes. Indeed we are used to the fact that the Lagrangian above

generically describes a cosmology, the Hamiltonian constraint being just the first Friedman

equation. In appendix B.4 we discuss the closest analogue we can have to a vacuum —

an almost static micron-sized universe that undergoes classical small oscillations in size

and shape on a time-scale of order of our Hubble time. However on longer time-scales

such a system is necessarily unstable against decompactification, crunching, or asymmetric

Kasner-like evolution, due to the wrong-sign kinetic energy of the scale factor a.

3. AdS/CFT and the real world

We have seen that, with the minimal particle content consistent with neutrino masses, the

Standard Model has AdS3×S1 vacua, even though the 4D cosmological constant is small

and positive. This vacuum is clearly a very close cousin of our own — since the size of the

circle is ∼ 20 microns, the high-energy physics in this vacuum — including the Standard

Model spectrum, whatever UV completes it all the way up to the Planck scale, even trans-

Planckian quantum gravitational physics up to energies up to 1048 GeV where ∼ 20 micron

black holes are produced — is the same as in ours.
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By AdS/CFT duality [6] there must exist a two-dimensional CFT dual to physics

in this background. Of course this must be a very peculiar CFT. The central charge is

c ∼ ℓ3M3 ∼ 1090. The spectrum of operator dimensions is strange — there are a few

operators with O(1) dimensions, dual to the metric, the photon, the graviphoton and the

radion. The operator dual to the Wilson line is rather bizarre — it is nearly marginal, with

an anomalous dimension of order e−108

! There is an enormous gap till the operators dual

to neutrinos and Kaluza-Klein modes on the S1 are encountered, with dimensions of order

∼ 1030, and then even larger gaps to more an more irrelevant operators corresponding to

the electron, muon, pions and the rest of the Standard Model spectrum. All the details of

the both the Standard Model and whatever comes beyond it are contained in the spectrum

of ridiculously irrelevant operators in the CFT.

Of course CFT’s with this type of huge gap in their spectrum of operators have long

been known to be relevant to duals of string theory models compactifying to AdS with fixed

moduli. Indeed, the peculiarity of the CFT’s led some to speculate that such CFT’s are

impossible and that there had to be some hidden inconsistency in these constructions. Here

we see that precisely such CFT’s arise even in the simplest possible case of 2D theories

as the duals of the AdS3×S1 vacuum of the Standard Model. Conversely, if it is ever

possible to prove that CFT’s with these properties do not exists, this necessarily implies

that the deep IR spectrum of our world must have additional light states to remove the

AdS minimum of the radion potential!

Our AdS3 minima are certainly metastable; there may be deeper AdS3 minima in the

Standard Model landscape. Whatever the deepest such minimum is, could it absolutely sta-

ble? This would be surprising given that the background is completely non-supersymmetric.

One possible instability would be the nucleation of a Witten bubble of nothing [7] but this

requires antiperiodic fermions around the circle while our vacuum exists only for periodic

fermions. A more fundamental issue is that, since the bulk 4D theory has a positive cos-

mological constant and a dS4 vacuum, we expect on general grounds that this dS4 solution

should be unstable to tunneling into other parts of the larger landscape. The dS4 decays

via bubble nucleation; the bubble size R4 can range in size from micro-physical scales to

as large as the dS4 Hubble length ℓ4, the latter arising from the minimal possibility of

Hawking-Moss transitions out of de Sitter space on Poincare recurrence times. If our cos-

mological constant is tuned to be be small by the presence of a huge discretum of nearby

vacua, R4 is parametrically smaller than ℓ4, it is conceivable that R4 ∼ ℓ4 if our vacuum

is isolated by huge potential barriers from the rest of the landscape.

How is the apparently necessary dS4 instability reflected in the CFT2 dual of the AdS3

vacuum? If R4 is smaller than the size of the S1, ∼ 20 microns, it is clear that the same

bubble nucleation process will occur in the AdS3×S1 vacuum. Actually, even if R4 is only

smaller than the AdS3 length, there is an effective 3D bubble that mediates the decay:

if the domain wall bounding the surface of the 4D bubble has surface tension σ and the

energy difference between vacua is p, we have R4 ∼ σ/p; wrapping the wall on the circle

gives us a lower-dimensional wall of tension σr while the pressure difference is pr, so a 3D

bubble has a size R3 ∼ (σr)/(pr) ∼ R4. For our neutrino-supported AdS3 vacua, the AdS3

length is only few times smaller than the dS4 Hubble; so if there is a discretum of vacua
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a) b)

Figure 4: a) Extremal Reissner-Nordstrom black hole interpolates between asymptotically flat

region and AdS×S vacuum; b) Extremal black hole interpolating to the lower dimensional vacuum

stabilized by the Casimir effect.

allowing for the adjustment of our cosmological constant, the AdS3 must also be unstable,

with an exponentially long lifetime.

Presumably this means that the CFT must itself be ill-defined at a tiny non-

perturbative level;1 for instance by having a marginal perturbation g with a metastable

minimum and an unbounded below potential. The timescale of the instability of the CFT

could be of order ℓ3 e−1/g. If our vacuum is isolated by huge barriers from the rest of the

landscape, it is conceivable that the AdS vacua are absolutely stable, since the required

bubble, while being smaller than ℓ4, could be larger than ℓ3 ∼ ℓ4/4, though this seems

incredibly unlikely!

4. Quantum horizons

Given the existence of a landscape of vacua in the Standard Model, it is natural to ask

whether it is possible to find geometries interpolating between vacua with a different num-

ber of non-compact space dimensions. Such interpolations are already familiar for classical

AdSn×Sm vacua. For instance, the Standard Model possesses AdS2×S2 vacua with the

sphere stabilized by a flux of the electric field. The interpolating solution is nothing but

the extremal Reissner-Nordstrom black hole. Indeed, far from the black hole the metric

is flat, while in the vicinity of the horizon an infinite AdS2×S2 throat is developed, see

figure 4a.

It has been fruitful to view extremal black holes as interpolations between different

vacua (cf. [8]) in the context of the interpolation of the scalar moduli fields in supersymmet-

ric theories between spatial infinity and the black hole horizon (“attractor mechanism”).

1We thank Juan Maldacena and Nathan Seiberg for a discussion on this point.
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As we will show, this viewpoint is useful in broader context. In particular, for the Casimir

stabilized vacua this leads to black hole solutions with the horizon supported entirely by

the quantum effects (the Casimir energy).

There is a qualitative difference between classical AdS2×S2 and the Casimir vacua. In

the former case the radius of the sphere S2 is of the same order as the AdS2 length, while

for the Casimir vacuum we have a true compactification, where the size of the compact

space is much smaller than the curvature length along the non-compact coordinates. Re-

lated to this, in the Casimir compactification the radion mass mR is much lighter than

the compactification scale 1/R. The length scale at which the interpolation happens is

determined by the inverse mass of the radion 1/mR. This is of order R for the classical

AdS2×S2 vacuum so the interpolating geometry has a form of a “hole”. Instead, for the

Casimir vacuum the interpolating geometry takes the form of a cone with a narrow opening

angle (see figure 4b)).

4.1 Setting up the problem in the three-dimensional case

Let us start a more explicit analysis by exploring geometries interpolating between three-

dimensional and two-dimensional vacua. As we will see this case turns out to be remarkably

simple technically but contains much of non-trivial physics. It is natural to look for an

interpolating metric with the following form

ds2 = −A2(z)dt2 + dz2 + R2(z)dφ2 , (4.1)

where φ ∈ [0, 2π) is a periodic coordinate. The precise form of the energy-momentum tensor

is determined by the specific mechanism used to stabilize the two-dimensional vacuum. It

is straightforward to calculate the energy-momentum related to the classical contributions

to the radion potential. For instance, if the cosmological constant in three dimensions is

negative, one can obtain a stabilized lower dimensional AdS2×S1 vacuum by turning on a

flux of a scalar axion field Φ (note, that in three dimensions this is equivalent to having

the electromagnetic flux),

Φ = Fφ .

Then, by explicit computation, the axion energy-momentum tensor in the geometry (4.1)

is

TN
M = −

(

ρ(R)δν
µ 0

0 σ(R)

)

, (4.2)

where

ρ(R) =
F 2

R2

is the classical contribution to the radion potential coming from the gradient energy of the

axion field, and

σ(R) = ρ(R) + R∂Rρ(R) . (4.3)

Actually, the relation (4.3) between T φ
φ and T ν

µ is a direct consequence of the conservation

of the energy-momentum tensor of the form (4.2) in the metric (4.1).
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This was a classical example. The Casimir contribution to the energy-momentum for

the geometry (4.1) is in principle more involved. Indeed, the compactification scale R is

changing in space, so the one-loop contribution is a complicated functional depending on

the local value of R(z) as well as on all its derivatives. Fortunately, we do not need the

exact form of this functional for our purpose of finding the interpolating solutions. Indeed,

as we argued before, we expect R(z) to be a very slow varying function of z, so that locally

the geometry is well approximated by a cylinder, and the derivative part of the Casimir

energy can be safely ignored. Under this assumption, because of the Lorentz invariance,

the energy-momentum tensor is again of the form (4.2) where ρ(R) is determined by the

Casimir energy,

ρ(R) =
VC(R)

2πR
.

We proceed with general ρ(R), and will be more specific about its shape later, when

necessary. Of course, as shown in the appendix A, a TN
M of the form (4.2) agrees with the

explicit calculation of the Casimir energy-momentum.

To summarize, we need to study solutions of the three-dimensional Einstein equations

for the metric ansatz (4.1) with the energy-momentum of the form (4.2). Explicitly, these

equations are

M3 R′′ = −Rρ(R) , (4.4)

M3 A′ R′ = −ARρ(R) , (4.5)

M3 A′′ = −A [ρ(R) + R ∂Rρ(R)] , (4.6)

where M3 is the three-dimensional Planck mass. For the two-dimensional vacua the radius

of the compact dimension is constant R = R0 so they correspond to zeros of the Casimir

energy,

ρ(R0) = 0 ,

while the curvature along the non-compact dimensions is determined by the slope of ρ,

A(z) =











exp(z/ℓ2), AdS2 × S1 vacuum (ρ′ < 0)

1, M2 × S1 vacuum (ρ′ = 0)

cos(z/ℓ2), dS2 × S1vacuum (ρ′ > 0)

. (4.7)

These coordinates cover the Poincare and causal patches of AdS2 and dS2, but can be

clearly extended to the global AdS2 (dS2).

For solutions with non-constant R(z) one can take the ratio of the (tt) and (zz) equa-

tions (4.4) and (4.5), and arrive at the following relation between A and R,

A(z) = R′(z) . (4.8)

As a result the interpolating metric (4.1) takes the form

ds2 = −R′2dt2 + dz2 + R2dφ2 (4.9)
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and the (tt) equation (4.4) implies that R is a solution to the one-dimensional mechanical

problem with the effective potential U determined by

dU

dR
= M−1

3 R ρ(R) . (4.10)

Note that this potential is extremal at the values of R corresponding to the lower di-

mensional vacua. From eq. (4.9) we see a direct confirmation of the intuition that the

interpolation to the lower dimensional vacuum takes place in the near horizon limit — the

region where the radius of the compact dimension approaches a constant value, R′ → 0,

corresponds to the horizon of the metric (4.9). To understand better the causal structure

of the metric (4.9) it is convenient to perform a change of coordinates and use R itself as

the interpolating variable. With this choice of coordinates the metric (4.9) is

ds2 = −f(R)dt2 + f(R)−1dR2 + R2dφ2 , (4.11)

where f(R) = R′2 can be found explicitly by making use of the “energy” conservation law

of the mechanical problem (4.4), giving

f(R) ≡ R′2 = ǫ − U(R) . (4.12)

The (tR) part of the metric (4.11) has the typical form of black hole geometries, with

horizons located where f(R) is zero. We see that the metric ansatz (4.1), having the

advantage of making the interpolating nature of the solution explicit, actually covers only

a small part of the interpolating geometry.

For metric written in the form (4.1) we found two branches of solutions — lower di-

mensional vacua (4.7) and solutions with non-constant R(z), described by the mechanical

problem (4.10). The latter can be presented in the form (4.11). To recover the compact-

ified vacuum solutions with (4.11) let us choose ǫ = U(R0) and zoom on the part of the

geometry (4.11) where R is close to R0. Namely, let us write

R = R0(1 + αr)

and rescale t → τ = αR0 t. Taking the limit α → 0 we obtain the AdS2×S1 (dS2×S1)

metric for negative (positive) U ′′(R0) in the form (4.11),

ds2 = −U ′′(R0)

2
r2dτ2 +

2

U ′′(R0)

dr2

r2
+ R2

0dφ2 ,

with curvature length

ℓ2 =

√

2

|U ′′(R0)|
. (4.13)

Finally, let us recall that our solutions are trustworthy as long as the radius R changes

slowly along the non-compact coordinates. When the metric is written in the form (4.9)

this implies R′ ≪ 1. From the definition (4.12) we see that this condition is translated in

the frame (4.11) to

f(R) ≪ 1 .

Given that this condition is satisfied one can trust the metric (4.11) both in the regions

where f(R) is positive and negative, i.e. irrespectively of whether the size of the compact

dimension changes in space or time.
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4.2 Extremal black holes interpolating from M3 to AdS2×S1

To be concrete, let us first focus on the case when the three-dimensional cosmological

constant is zero and the axion fluxes are absent, so that the effective potential U goes to

zero at large values of R. Let us start with the simplest case, when the lower dimensional

vacuum has a negative cosmological constant. According to (4.7) this implies that the

effective potential has a maximum at R = R0, see figure 5. A potential of this form is

generated, for instance, in a theory with some number of light bosons and heavy fermions,

such that the total number of fermionic degrees of freedom is larger than the total number

of bosons. In the simple case when all fermion masses are characterized by a single scale

µ ≪ M3 all other parameters in the effective potential U are also determined by this scale.

For instance, the radius of the compact dimension in the two dimensional vacuum is

R0 ∼ µ−1,

while the value of the potential at the maximum is

U(R0) ∼
µ

M3
.

The solution to the one-dimensional mechanical problem, which determines the shape R(z)

of the interpolating geometry, has energy ǫ = U(R0), so that it reaches the top of the

effective potential in an infinite “time” z. For z → +∞ it describes a flat (2+1) dimensional

space with opening angle equal to

θo = 2π R′∣
∣

z=+∞ = 2π
√

U(R0) ∼ 2π

(

µ

M3

)1/2

. (4.14)

At z = −∞ the radius of the compact dimension is exponentially approaching its stabilized

value

R = R0(1 + e−|z|/ℓ2) ,

so that the metric (4.9) indeed asymptotes to AdS2×S1 where the curvature radius ℓ2 is

determined by (4.13)

ℓ2 ∼ µ

(

M3

µ

)1/2

.

So, as expected, the interpolating geometry has the form of a narrow cone with a conical

singularity resolved into an infinitely long tube. The circumference of the horizon of the

interpolating black hole is

L = 2πR0 ∼ 2πµ−1 . (4.15)

The surface gravity at the horizon, which is proportional to the first derivative of the

function f(R), vanishes, so that the Hawking temperature is zero. So, we indeed obtained

the asymptotically flat extremal black hole solution in three dimensions. These are not

possible in classical gravity, but accounting for the Casimir effect leads to the appearance

of the quantum horizon. It is worth stressing again, that the existence and the shape of

these quantum black holes is under full control in the limit when the opening angle is small,
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naked singularity
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R=∞

R=0

R
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horizon

at ∞
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R

U(R)
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R=0 R

U(R)
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Figure 5: Interpolating solutions from M3 to AdS2 for trivial (1st row) and non-trivial Casimir

(2nd÷5th row) mechanical potential (drawn in the 2nd column) U(R), defined in eq. (4.10) for

different choices of the total energy (blue dashed line). In the first column there are the corre-

sponding Penrose diagrams for the extended solution (eq. (4.11)), with iso-R curves explicit. In

the third column the actual geometry is shown for the classical allowed regions of the potential

(corresponding to the red arrow curve).

which is true whenever the fermion mass scale is parametrically smaller than the Planck

mass.
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Interestingly, the Bekenstein entropy for these solutions is determined just by the

classical geometry (opening angle) and does not depend on the Planck mass,

S =
L

4G3
∝ 1

θ2
o

, (4.16)

where G3 = 1/(8πM3). In particular, the entropy remains finite in the decoupling limit,

when one sends M3 to infinity while keeping an opening angle fixed. This is understandable,

because the mere existence of the three dimensional black holes is due to the quantum

effects, so their number of microstates should remain finite in the limit ℏ → 0. In this limit

the quantum horizon shrinks to zero, so that one is left with a non-gravitational theory on

a cone. Interestingly, this is similar to what happens to the extremal supersymmetric black

holes in string theory, where the Bekenstein entropy also remains finite in the limit of zero

string coupling. This is one of the crucial ingredients allowing to perform the microscopic

calculations of the black hole entropy by counting the BPS D-brane configurations in the

decoupling limit [9]. It would be very interesting to understand what are the relevant

microscopic degrees of freedom in the decoupling limit for the string realization of our

(non-supersymmetric!) setup.

If this is an extremal black hole what charge does it carry? Recall that the low

dimensional vacuum only exists with periodic boundary conditions for fermions. This is

an “exotic” choice. In general, on any simply connected space that asymptotes to a cone,

fermions would be antiperiodic in the conical region (for instance, if we replaced the black

hole with a smooth “cigar” tip). This antiperiodicity is a reflection of the “minus” sign that

the fermionic wave function picks up if one performs a 2π rotation around the tip. Choosing

the periodic boundary condition on the semi-infinite cylinder corresponds to switching on

the Z2 flux of the spin connection at the tip, similarly to how the non-integer Aharonov-

Bohm flux changes the periodicity of the fermion wave function around a solenoid. This is

the flux that labels our interpolating solution.

4.3 Non-extremal quantum black holes

The above discussion makes it natural to look for a family of non-extremal quantum black

holes carrying Z2 flux, such that the interpolating solution is the limiting point for this

family with the minimum mass. Also one may wonder whether quantum black holes exist

in the sector with trivial flux (anti-periodic conditions for fermions). It is straightforward

to identify what are these non-extremal black holes. Let us start with the charged ones

and look at the solutions to our mechanical problem with different values of the energy ǫ.

If ǫ > U(R0), i.e., the conical opening angle at z = +∞ is larger than for the extremal

solution, a solution in the analogue mechanical problem overshoots R = R0 and the function

f(R) does not have zeroes. This means that the Casimir energy is not strong enough to

shield the tip of the cone by the horizon, and a naked conical singularity develops.

On the other hand, for values of ǫ smaller than the energy at the top of the effective

potential U , the solution to the analogue problem undershoots R0. As a result f(R) is

zero at the turning point Rh > R0, implying that the conical singularity is shielded by a

horizon. There is also an inner horizon corresponding to the second zero of f(R), so the
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causal structure of the extended solution is similar to that of the conventional Reissner-

Nordstrom black hole.

Unlike the extremal ones these black holes have non-zero Hawking temperature. It is

most easily found by performing the Wick rotation and identifying the periodicity of the

Euclidean time. As usual, one obtains that the Hawking temperature is determined by the

surface gravity, or explicitly,

TH =
f ′(Rh)

4πǫ1/2
. (4.17)

It is straightforward to check that the Bekenstein entropy in eq. (4.16) satisfies the first

law of thermodynamics

dM = TdS , (4.18)

where the mass M is determined by the opening angle

M = 2πM3

(

1 − θo

2π

)

= 2πM3(1 − ǫ1/2) .

Indeed, by definition f(Rh) = 0, so, taking into account (4.12), one obtains

dǫ = −f ′(Rh)dRh . (4.19)

Using (4.19) one immediately finds that the first law of thermodynamics (4.18) indeed

holds.

The non-extremal solutions take an especially simple form in the limit when the open-

ing angle is so small that the radius of the compact dimension at the horizon is much larger

than the mass scale of all massive particles. In this limit the Casimir energy is just

ρ(R) = − ζ(3)n0

(2π)4R3
,

where n0 is the total number of the massless degrees of freedom. Plugging this Casimir

potential into (4.10) and (4.12) and performing the rescalings t → ǫ1/2t and R → Rǫ−1/2

one recognizes in the (tR) part of the metric (4.11) the radial part of the (3+1)-dimensional

Schwarzschild metric with Schwarzschild radius

rs =
ζ(3)n0

M32πθ3
o

,

where the asymptotic opening angle θo of the compact φ-coordinate is related to the “en-

ergy” ǫ in the same way as before, θo = 2πǫ1/2. Unlike the charged extremal black hole

these solutions do not have a smooth decoupling limit. Indeed, in the limit of large M3

with fixed opening angle θ0 (so that the Bekenstein entropy remains finite), the Hawking

temperature TH = (4πrs)
−1 diverges and one cannot trust the semiclassical geometry.

Actually, such non-extremal quantum black holes were known before [10, 1], and were

constructed in a way that provides a complementary viewpoint to understand their origin,

and simultaneously serves as a nice consistency check for our calculation. Namely, the

metric (4.11) with function f(R) of the Schwarzschild form was found to describe black holes
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localized on the Planck brane in the AdS4 Randall-Sundrum setup. From the holographic

CFT point of view these are black holes in three-dimensional gravity coupled to the large

N CFT. Now, at the classical level there is no attractive force in three-dimensional gravity,

and the only effect of the point mass on the geometry is to produce the conical deficit

angle, so there can be no horizon. This is no longer true at the quantum level; the one

loop correction to the graviton propagator gives rise to an attractive potential [11] and

as a result the existence of a horizon becomes possible. On the AdS side these quantum

effects are captured by the classical dynamics in the bulk, so that the induced metric on the

Planck brane indeed describes the quantum black hole geometry in the lower dimensional

theory. Of course, the attractive one-loop potential is generated for a general matter sector

as well, not just for the large N CFT, and “Schwarzschild” solutions can be found in this

way in the purely three-dimensional setup as well (see, e.g. [12]).

There is a little puzzle here — the one-loop correction to the graviton propagator

leads to the attraction, independently of whether a particle circling around the loop is

boson or fermion. On the other hand, for the existence of the compactified vacuum and

of the extremal interpolating solution is crucial that fermions contribute to the Casimir

energy with the opposite sign. The resolution is related to the Z2 flux discussed above.

In the absence of the flux, the fermions are antiperiodic and the one-loop potential is

necessarily attractive. Turning on the flux leads to periodic boundary conditions, making

their contribution to the one-loop potential repulsive.

Finally, there are also solutions with negative energy ǫ. The meaning of these geome-

tries is not apparent with the metric ansatz (4.9), as the only solutions of the mechanical

problem that reach the R = ∞ region in this case are those with the imaginary “time”

z. However, presenting the metric in the form (4.11) makes it explicit that these are as

meaningful solutions of the Einstein equations as those with positive energy ǫ. Unlike the

latter, solutions with negative energy do not asymptote to the conical geometry in the

asymptotically flat (large R) region. Instead, they describe anisotropic cosmologies with

R playing the role of time. In the large R region they take the form

ds2 = −dR2

|ǫ| + |ǫ|dt2 + R2dφ2 .

Locally this is just a Minkowski metric, with the (Rφ) part of it being the expanding Milne

universe. Globally there is a difference from the Milne universe due to the compactness of

the φ-coordinate.

In figure 5 we collected together the different options discussed above — large en-

ergies corresponding to the naked conical singularities, critical energy U(R0) (extremal

black hole), small positive energies (non-extremal black holes) and negative energies (cos-

mologies). We also presented a schematic cartoon of the geometry in each case, and

the corresponding Penrose diagrams. In particular, we see that the conformal diagram

corresponding to solutions with negative energy has the same form of the Penrose dia-

gram for Schwarzschild black holes rotated by ninety degrees. This diagram describes the

anisotropic bouncing cosmology, where the radius of the compact dimension starts at in-

finity and bounces back. The scale factor f(R) in front of the non-compact spatial (in
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?

Figure 6: As the quantum black hole evaporates its conical opening angle opens up. Depending

on the presence of Z2 flux this process either stops at the critical opening angle (4.14) or continues

until the horizon shrinks to the Planckian size.

the asymptotically Minkowski region) coordinate t bounces as well. The big crunch/big

bang singularity is partially resolved by the Casimir energy, in a sense that observers can

survive a transition from the contracting to the expanding stage without ever hitting a

time-like singularity at R = 0. Note, that similarly to the inner horizon of the Reissner-

Nordstrom black hole, the horizon replacing the big crunch singularity suffers an instability

with respect to the small perturbations of the initial data.

The quantum black holes that do not carry the Z2 flux are also straightforward to

identify. In this case fermions satisfy antiperiodic boundary conditions, so that their con-

tribution to the Casimir energy has the same sign as bosons. The solutions of the cor-

responding mechanical problem describe either bouncing cosmologies with an unresolved

singularity (imaginary time solutions with negative energies), or uncharged quantum black

holes (positive energy solutions with a single turning point).

This discussion implies the following evolution history for the quantum black holes

(see figure 6), after one takes into account the Hawking evaporation. One starts with a

black hole of a near critical Planckian mass, which is a very narrow cone with a singularity

shielded by the quantum horizon. As a result of the Hawking evaporation the horizon

shrinks and the angle of the cone opens up. Depending on whether the Z2 flux is present

or not, this process either stops at the critical opening angle (4.14) and the extremal black

hole forms, or continues until the cone opens completely and the horizon shrinks to the

Planckian size.

4.4 Interpolation from AdS3 and dS3 vacua

There are no difficulties in extending the above discussion to the case when the three

dimensional vacuum is either AdS3 or dS3. All general results of the section 4.1 still apply,

the only difference being that the effective potential does not vanish at R = ∞.
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Figure 7: Quantum black hole in dS3 has a narrow opening angle that cuts out most of the causal

patch.

For instance, in the AdS3 case the effective potential behaves as U(R) ∝ −R2. As

before, the extremal interpolating geometry corresponds to the critical solution of the

mechanical problem with ǫ = U(R0). The large R region of the metric (4.11) asymptotes

now to the boundary of the AdS3.

Just as in the flat case for larger values of ǫ one obtains AdS3 geometries with a naked

conical singularity, and for smaller values of ǫ non-extremal black holes. The only difference

with the flat case is the absence of the solutions that approach the asymptotically AdS

region as cosmologies.

In a sense, the situation is the opposite in the case of the asymptotic dS3 geometry.

Namely, in this case the potential of the mechanical problem is positive at large R, U(R) ∝
R2, so that at any value of energy ǫ the large values of R belong to the classically forbidden

region of the auxiliary mechanical problem. In analogy to what we had at ǫ < 0 in

section 4.3, this implies that R plays the role of time in this region, so that the metric (4.11)

describes an inflationary three-dimensional Universe at the largest values of R. A turning

point of the mechanical solution at large R corresponds to the horizon of the static patch of

dS3. As before, at large values of ǫ the solution (4.11) does not have any other horizons and

develops a naked conical singularity at the origin R = 0 of the static patch. For extremal

solutions with ǫ = U(R0) this singularity is resolved into an infinite AdS2×S1 throat. At

even smaller values of ǫ it is shielded by a non-extremal horizon. Smallness of ǫ implies

that these solutions contain only a tiny fraction of the de Sitter horizon, see figure 7.

One peculiarity of the asymptotically dS3 case, is the existence of a new extremum

(minimum) of the effective potential U(R) at R = R1. According to the discussion of

section 4.1 this minimum corresponds to the dS2×S1 vacuum. As a result, solutions (4.11)

with ǫ close to U(R1) develop a number of new interesting features. We will discuss these

in section 4.6, where we describe interpolation to the dS2×S1 vacua.

Here we would like to discuss another important question related to the interpolation

from the higher dimensional de Sitter space. Namely, the finite entropy S of the de Sitter

horizon strongly suggests that the Hilbert space describing possible quantum states of the

de Sitter space is finite dimensional. In turn, together with the thermal nature of the de

Sitter vacuum, this implies that the de Sitter observer should go through all possible states
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before the Poincare recurrence time ∼ eS .

In the context of the metastable de Sitter vacuum, which can decay to the Minkowski

or AdS vacuum with the same number of spatial dimensions, this expectation is supported

by the remarkable fact that the semiclassical decay rate described either by the Coleman-de

Luccia [13] or Hawking-Moss [14] instantons is always faster than e−S , no matter how high

the barrier between the two vacua is. On the other hand, we have not found solutions

which have the interpretation of the expanding bubble of the lower dimensional vacuum

in the higher dimensional one. How is that compatible with the argument sketched above,

that the de Sitter space should be able to populate all other states at the times scales

shorter than the recurrence time?

The existence of the interpolating black hole solutions found here indicates that this

process is rather different from the conventional Coleman-de Luccia vacuum decay. Namely,

instead of creating an expanding bubble of the new vacuum, de Sitter thermal fluctuations

may lead to the collapse of most part of the static patch into the quantum black hole

described here. Afterwards this black hole will Hawking evaporate and approach an ex-

tremal interpolating solution. We did not attempt to find an explicit instanton solution

describing such a process. Such an instanton may have rather peculiar properties, as it

should change the value of the Z2 charge within a causal patch. Note, that a creation of

a pair of extremal black holes (such a configuration is neutral with respect to Z2) is not

possible within one causal patch, because each of the black hole has a deficit angle close to

2π. On the other hand, there is no conservation law for the charge within a given causal

patch and, consequently, no reasons to expect that such an instanton does not exist. Note

that unlike for the usual Coleman-de Luccia bubble this transition does not change the

microscopic structure of the vacuum, so that small enough observers (for instance, many

of the Amoebozoa) are able to survive it.

4.5 Interpolation in 4D

Let us now discuss how the interpolating solutions look like in more realistic situations,

namely let us describe solutions interpolating from four- to three-dimensional vacua. For

simplicity, we will mainly focus on the solutions interpolating from the four-dimensional

Minkowski space to AdS3×S1. As we discussed in section 2 this case is relevant for the

Standard Model neutrino vacua, in the approximation when one neglects the effects related

to the presence of the four-dimensional cosmological constant. In this case we are looking

for a cosmic string-like geometry, so that a natural generalization of the three-dimensional

ansatz (4.1) is

ds2 = A2(z)
(

−dt2 + dx2
)

+ dz2 + R2(z)dφ2 , (4.20)

where x is the non-compact spatial coordinate along the string. Note, that a priori there

is no reason to assume Lorentz invariance in the (tx) plane, as we did in the ansatz (4.1).

As we will see, assuming this symmetry allows to obtain the extremal interpolating geom-

etry, while giving up this symmetry will lead to the related family of non-extremal black

objects. For simplicity let us proceed with the Lorentz invariant ansatz (4.1). The energy-

momentum tensor still takes the form (4.2), where now, of course, µ, ν = t, x, φ. The (tt),
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(zz) and (φφ) components of the Einstein equations then take the following form

M2
4

(

R′′ + R′A
′

A
+ R

A′′

A

)

= −R ρ(R) , (4.21)

M2
4

A′

A

(

2R′ + R
A′

A

)

= −R ρ(R) , (4.22)

M2
4

[

(

A′

A

)2

+ 2
A′′

A

]

= − [ρ(R) + R ∂Rρ(R)] . (4.23)

To proceed it is convenient to solve for A′/A from the (zz)-equation (4.22),

A′

A
= −R′

R
±

√

(

R′

R

)2

− ρ

M2
4

. (4.24)

To understand the meaning of the sign ambiguity in (4.24), note that the asymptotically

flat boundary conditions at z = −∞ are

R′

R

∣

∣

∣

∣

z=−∞
=

1

z
< 0 , A′∣

∣

z=−∞ = 0 .

These correspond to the “−” sign in (4.24) (recall, that we are assuming zero cosmological

constant, so that ρ(R) → 0 at large R). On the other hand, asymptotically flat boundary

conditions at z = +∞ require R′ to be positive and correspond to the “+” sign in (4.24).

The existence of two branches in (4.24) indicates that, just as in the three dimensional case,

it is impossible to find a smooth solution of the form (4.20) connecting two asymptotically

non-compact flat regions at z = ±∞ (such a solution would be a Lorentzian wormhole). In

what follows we choose the sign “−” in (4.24) so that the asymptotically flat region is at

z = −∞ (this convention is opposite to the one used before, however it is more convenient

for the purposes of the present discussion). Then one can take the combination of the (tt)

and (φφ) equations (4.21), (4.23) that does not contain A′′, and plug (4.24) there. As a

result one arrives at the following equation for the radius of the compact dimension alone,

R′′ + γR′ = −∂RU , (4.25)

where the effective potential U is determined by

dU(R)

dR
=

1

M2
4

R(ρ − R ∂Rρ) (4.26)

and the friction parameter γ is

γ = −2





R′

R
+

√

(

R′

R

)2

− ρ



 . (4.27)

The shape of the effective potential U due to the Casimir energy in a theory with the

light spectrum of the Standard Model (and with zero cosmological constant) is the same

as the one in figure 5. As before, the maximum at R = R0 corresponds to the compactified
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AdS3×S1 vacuum and we are interested in the solution that starts at R = ∞ and makes it

to the top of the potential in a infinite time.

The difference with the three-dimensional case is the presence of the friction term

in (4.25). It is straightforward to check that ρ < 0 in the whole region to the right of

the maximum, R > R0, so that the friction parameter γ is negative there and gives rise

to an antifriction. The presence of this antifriction does not prevent us from running the

argument proving the existence of the extremal solution. Just like in the three-dimensional

case in the limit of a very small opening angle, R′(−∞) → 0, the solution to the mechanical

problem (4.25) undershoots the maximum, while for large opening angles it overshoots, so

there is a critical value such that R(z) monotonically drops down and stops at R0 in an

infinite time. From (4.24) one sees that the warp factor A(z) also monotonically drops

down for this solution without ever changing its sign (recall, that we chose the “−” sign

in (4.24)) and at large z approaches zero as

A(z) ∼ e−z
√−ρ ,

so the extremal solution indeed interpolates to the AdS3×S1 vacuum. On dimensional

grounds it is clear that the asymptotic opening angle for the solution interpolating to the

neutrino vacuum of the Standard Model is

θo = 2π|R′(−∞)| ∼ mν

M4
.

Similarly to the three-dimensional case, solutions with larger opening angles overshoot

and develop a conical singularity. On the other hand, the behavior of the solutions with

smaller opening angles is different from the lower dimensional case. Namely, as one can

see from (4.24), the turning point R′ = 0 does not correspond to a horizon any longer,

so the undershooting solutions do not describe the non-extremal black strings. What

happens instead is that, due to the presence of the antifriction term in (4.25), the radius

of the compact dimension diverges at a finite distance after the turning point, so that

the solution develops a naked singularity. As we said before, in order to obtain the black

non-extremal solutions one has to give up with Lorentz invariance in the ansatz (4.20).

The extension of these results to the AdS4 case is straightforward. The only sub-

tlety is that the asymptotically AdS4 boundary condition at z = −∞ implies that

A ∝ R ∝ exp(|z|/l3), so that R′ is infinite. This makes it inconvenient to use R itself as

a variable in the auxiliary mechanical problem. Changing variable to k = log R in (4.25),

one can literally repeat the above argument to prove that the interpolating solution of the

form (4.20) exists in this case as well. This solution can be interpreted as a holographic

RG flow of a CFT3 broken by compactifying one of the spatial dimensions on a circle to a

CFT2 in the IR.

However, unlike in the lower-dimensional case, the ansatz (4.20) is not the appropri-

ate one to describe an interpolation from dS4. A fast way to see this, is to note that

translational invariance in x is incompatible with dS4 symmetries. To see this explic-

itly it is enough to solve eqs. (4.21), (4.22) and (4.23) for a pure cosmological constant,

ρ(R) = const > 0. It is straightforward to check that the resulting vacuum solutions
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are never maximally symmetric, i.e. dS4 metric cannot be presented in the form (4.20).

Instead, the cosmic string geometry in the static dS4 coordinates takes the form

ds2 = −(1 − r2)dt2 +
dr2

1 − r2
+ r2

(

dθ2 + ǫ sin2 θdφ2
)

,

where ǫ determines the deficit angle. It is likely that the problem of finding an interpolation

between this geometry and the AdS3×S1 vacuum cannot be reduced to ordinary differen-

tial equations and requires the analysis of a two-dimensional system of partial differential

equations with non-trivial dependence on both r and θ. Having seen how it works in three

dimensions, in principle there should be no obstruction for the existence of the quantum

black strings in dS4.

4.6 Interpolation to dS vacua

So far we focused on interpolations to low dimensional vacua with a negative cosmological

constant. This situation is similar to the ordinary Reissner-Nordstrom black holes and is

relevant for the neutrino vacua of the Standard Model (assuming neutrinos are Majorana).

However it is interesting to consider also what happens when the lower dimensional vacuum

has a positive cosmological constant.

Natural interpolating solutions in this case are Coleman-de Luccia bubbles describing

decompactifications of the lower dimensional vacua as discussed in [15]. Of course, our

four-dimensional Universe could not have originated from one of the Standard Model three-

dimensional vacua in this way, as the reheating temperature would be too low. However, it

would be interesting to study the observational cosmological consequences of the scenario

where our Universe was created as a result of the decompactification of a lower dimensional

metastable vacuum. We will not address this issue here.

Instead, given that in the three-dimensional setup we have an explicit solution (4.11)

that applies to the low dimensional de Sitter vacuum as well, let us discuss its properties in

this case. Note that compactifications to two dimensions are somewhat subtle because the

radion field is not dynamical. Nevertheless, as discussed in appendix B.3, there is a sense

in which the de Sitter vacuum always corresponds to the maximum of the radion potential

in this case. Due to the absence of the dynamical radion this vacuum is classically stable

under local perturbations (actually, even in four dimensions a de Sitter maximum can be

effectively stable if the radion is light enough, so that the Universe is eternally inflating on

“the top of the hill”). As a result, instead of the Coleman-de Luccia type of bubbles one

may expect the interpolating solution to describe just a classical rolling from the top of

the potential in this case.

The shape of the effective potential U corresponding to the dS2×S1 vacuum is shown in

figure 8b. It is straightforward to analyze the structure of the interpolating solutions (4.11)

at different values of ǫ. In all cases the corresponding Penrose diagrams are ninety degrees

rotations of those shown in figure 5. Let us discuss here the solution exhibiting the richest

pattern of features, namely the near extremal one, with ǫ being slightly larger than the

value of the potential U at the minimum. The corresponding Penrose diagram is shown in

figure 8a.
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Figure 8: a) Conformal diagram of the near extremal solution interpolating to the dS2×S1 vacuum

and b) the corresponding mechanical potential U(R).

Part II (as well as its horizontally translated cousins II′ . . . ) of this diagram cor-

responds to the classically allowed region of the mechanical problem. According to the

discussion at the end of section 4.1, in the near extremal limit, the geometry of this region

is that of the causal diamond of the dS2×S1 vacuum. As usual, after continuation through

the horizon the R-variable becomes time-like, while the t-variable is space-like. So parts I

and III of the Penrose diagram cover regions with anisotropic cosmological expansion.

The geometry of the region III has a structure somewhat similar to that of the interior

of the Schwarzschild black hole. Namely, the compact coordinate shrinks in this region

down to zero size at the R = 0 singularity. So, as a result of the quantum effects the conical

singularity is replaced by a big crunch singularity for the compact dimension. However, the

function f(R) grows indefinitely in this region, implying that the non-compact space-like

coordinate t experiences superaccelerated cosmological expansion and eventually hits the

big rip singularity at R = 0.

One interesting difference with the black hole interior is due to the part of the region

III adjacent to the region II (grey shaded region in figure 8a), where the effective potential

is still approximately quadratic,

U ≈ U(R0) + ℓ2
2(R − R0)

2 + . . . .

Plugging this expression into f(R), one finds that this part of the region III is an exponen-

tially inflating two-dimensional Universe in the FRW coordinates. The size of the compact

dimension slowly rolls down here, so in a sense the radion plays the role of the inflaton.

This interpretation is somewhat subtle though, because, at least at the classical level, there

is no dynamical radion in the compactifications from three to two dimensions.

Finally, it is the existence of the region I which signals that we are dealing with an

interpolating geometry. Indeed, in this region, the coordinate R is also time-like and, as

it grows to infinity, the function f(R) approaches a constant value f(+∞) ≈ −|U(R0)|, so
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that the metric is flat with the (Rφ) part being the expanding Milne universe. Globally

there is a difference from the Milne universe due to the compactness of the φ-coordinate.

Just like in the region III, a shaded part of the region I describes an exponentially

inflating two-dimensional Universe. Finally, regions I′, III′ describe the same cosmological

solutions as I, III with the reversed direction of time. In the vicinity of the boundary with

the region II regions I′, III′ describe collapsing cosmologies and their horizons are very

much similar to the inner Cauchy horizon of the Reissner-Nordstrom black hole. As usual,

such a horizon is unstable with respect to small perturbations of the initial data, so regions

I′, III′ are not to be there in a physically realizable situation.

Consequently, as expected, the physical meaning of the dS2×S1 interpolating solution

is to describe the inflation “on the top of the hill” in the lower dimensional vacuum,

which ends up either in the singularity, where the compact dimension collapses, or exits

into the asymptotically flat decompactified space-time. It will be interesting to calculate

the spectrum of cosmological perturbation for this inflation. As we already mentioned, a

peculiar feature of this case is that there are no propagating perturbations of the inflaton

(radion) at the classical level. However, at the one-loop level we expect the inflaton to

become dynamical.

5. Conclusions

We have seen that the Standard Model has a near-moduli space of lower-dimensional vacua

with moduli stabilized by a combination of a tiny tree-level contribution from the cosmo-

logical constant and one-loop corrections. For the minimal theory of neutrino masses, there

are AdS3×S1 vacua, implying the existence of a dual CFT2 describing the Standard Model

coupled to Quantum Gravity. We also showed quite generally that it is possible to inter-

polate to lower-dimensional AdS vacua as near-horizon regions of new kinds of quantum

extremal black objects — black strings in going from 4 → 3 dimensions, black holes from

3 → 2 dimensions. The extremal 3D black holes are particularly interesting — they are

metastable objects with an entropy that is independent of ℏ or GN , so a non-gravitational

microscopic accounting of their entropy might be possible in a decoupling limit where

GN , ℏ → 0 and the geometry degenerates to a cone with a fixed, small opening angle.

There are a number of obvious issues that require further elaboration. We did not study

the radion effective potential for radii smaller than the QCD scale, so we don’t know if there

are additional vacua there. Nor have we analyzed the SM potential in the case of even lower

dimensional compactifications. It would be interesting to explicitly find the gravitational

solutions that interpolate between dS4 and 3D vacua — symmetry considerations suggest

that the problem is different from its lower-dimensional analogue. We also did not attempt

to find interpolating solutions from 4D to 2D vacua. If 3D de Sitter vacua can exist, it is

natural to ask if our universe could have originated from tunneling out of eternal inflation

in 3D. Of course we need to have a phase of slow-roll inflation after the nucleation of our

4D bubble takes place, so the tunneling should happen with the inflaton stuck at the top of

its potential. It would be interesting to investigate possible cosmological signatures of such
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a scenario. Finally, we have not explicitly constructed instantons for transitions between

de Sitter space and the extremal quantum black objects.

A crucial ingredient for both the existence of these non-SUSY vacua and the quantum

horizons allowing interpolation is the violation of the null-energy condition and negative

gravitational energy associated with the Casimir effect. It is interesting that objects with

negative gravitational energy play a crucial role in all modern mechanisms for stabilizing

moduli to flat or dS spaces such as KKLT [16]; for instance negative tension orientifold

planes are present in these constructions. Just as the new Standard Model vacua we have

found are associated with quantum black objects, it is natural to conjecture that at least

the AdS vacua in the string landscape can be realized as near-horizon geometries of new

black brane solutions asymptoting to 10 or 11 dimensions, or more generally some point

on the maximally supersymmetric moduli space. The orientifolds must play a crucial role

in allowing the existence of these solutions. The landscape of lower-dimensional vacua

should thus be associated with a zoo of exotic black hole solutions, allowing us to look at

the vacua from the “outside”. It would be interesting to try and find these black brane

solutions explicitly for the classical IIA vacua of [17]. As a simpler warm-up with the same

essential features — negative tension and fluxes— consider stabilizing a 1D interval (or

S1/Z2 orbifold), by having a negative tension T on one end of the interval and an axion

with decay constant f and fixed periodicity around the circle. Such a situation could well

exist for our vacuum; if there is low-energy SUSY, we could have T ∼ −m4
SUSY and the

QCD axion suffices. The radion effective potential is Veff(R) ∼ R−3(ΛR − |T | + f2/R); Λ

is negligible here and there is a non-trivial AdS minimum. The interpolating geometry in

this case should look like a narrow strip, bounded by the negative tension brane on one

end and the other end of the interval on the other, again with a small opening angle.

The necessity of negative energy objects in realistic models of modulus stabilization has

sometimes been thought of as a technicality — but we have seen that they are associated

with new sorts of horizons and thus surprising causal structures in the higher-dimensional

geometries the lower-dimensional vacua are embedded in. It is worth exploring this issue

further. For instance, we often imagine tunneling out of stabilized dS vacua to 10/11

dimensional supersymmetric space-times; but this is not correct. The asymptotic spaces

must not only carry a remnant of e.g. the fluxes labeling the vacua, but they also have e.g.

orientifold planes with negative gravitational energy. How do these affect the geometry?
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A. Casimir energy

In this appendix we review the derivation of the 1-loop Casimir contribution to the energy-
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momentum tensor for a generic massive field, in d-dimensions with one dimension com-

pactified on a circle. Let us call xd = y ∈ [0, 2πR) the compact dimension. Given a free

scalar field with Lagrangian

L = −1

2
(∂Φ)2 − 1

2
m2Φ2 ,

at 1-loop the expectation value of the energy-momentum tensor reads

〈

Tµν

〉

=

〈

L gµν − 2
δL

δgµν

〉

= lim
x′→x

[

1

2

(

∂µ∂′
ν + ∂ν∂

′
µ

)

− 1

2
gµν

(

∂ρ∂′
ρ + m2

)

]

G(x − x′) , (A.1)

where G(x−x′) = 〈Φ(x)Φ(x′)〉 is the free propagator. When one dimension is compact the

Casimir contribution can easily be obtained just by summing the infinite volume Green

function over all the images, namely

G(x − x′) =
∑′

n
G∞(x − x′ + 2πR n ŷ) ,

in the sum n runs over all integers but 0, which corresponds to the infinite volume R-

independent contribution that must be reabsorbed into the cosmological constant. Notice

that, having subtracted the n = 0 contribution, also the second term in eq. (A.1) vanishes.

So we finally have

〈

Tµν

〉

=
1

2
lim

x′→x

(

∂µ∂′
ν + ∂ν∂′

µ

)

∑′
n
G∞(x − x′ + 2πR n ŷ)

= −
∑′

n
∂µ∂νG∞(yn)|yn=2πRnŷ

= −
[

ρ(R) ηµν + R ρ′(R) δy
µ δy

ν

]

, (A.2)

where

ρ(R) = 2
∑′

n

∂G∞(y2
n)

∂y2
n

∣

∣

∣

∣

yn=2πR n ŷ

,

is the Casimir energy density. In the case of charged fields we can also have non-periodic

boundary conditions

Φ(x, y + 2πR) = eiθΦ(x, y) ,

and the Green functions in the sum get an extra Wilson line contribution

∑

n

′
einθG∞(x − x′ + 2πRnŷ) .

So the final expression for the Casimir energy density in the general case reads

ρ(R) = 2
∑′

n
einθ ∂G∞(y2

n)

∂y2
n

∣

∣

∣

∣

yn=2πR n ŷ

. (A.3)

This formula applies also for fermion, vector and graviton fields, with an extra minus in

the case of fermions. By plugging in the explicit formula for the Green function one can
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easily read the result. For example, in the case of d = 4 for a massless field with periodic

boundary conditions, the Green function reads

G∞(y2
n) =

1

4π2y2
n

,

so that eq. (A.3) gives

ρ(R) = − 4

(2π)6R4

∞
∑

n=1

1

n4
= −π2

90

1

(2πR)4
.

The contribution in the effective potential in the dimensionally reduced 3D theory reads

VC = 2πR ρ(R) = − 1

720πR3
,

while the contribution in the Weyl-rescaled metric of eq. (2.1) is just

− r3

720πR6
.

From the form of the energy-momentum tensor (A.2) we can easily derive the condition

for ρ(R) not to violate the Null Energy Condition

Tµνnµnν ≥ 0 , ∀nµ : n2 = 0 ,

and reads

Tµνnµnν = −2(ny)2R ρ′(R) ≥ 0 ,

ρ′(R) ≤ 0 ,

which is satisfied by fermions but violated by bosons.

Let us now derive the explicit formula for ρ(R) in the most general case. Since we are

interested to the value of the Green function outside the light-cone we can work directly

in Euclidean space, the Green function then reads

G∞(x) =

∫

ddk

(2π)d
eikx

k2 + m2
=

md−2

(2π)d/2

Kd/2−1(m x)

(m x)d/2−1
, (A.4)

where Kν(z) is the Bessel function

Kν(z) =
1

2

∫ ∞

0
dβ βν−1 e

− z
2

“

β+ 1

β

”

.

Now, by using the fact that

∂z

(

Kν(z)

zν

)

= −Kν+1(z)

zν
,

inserting the result for the Green function (A.4) into eq. (A.3) we get

ρ(R) = −
∞

∑

n=1

2md

(2π)d/2

Kd/2 (2πR m n)

(2πR m n)d/2
cos(n θ) .
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The massless limit can easily be taken by noticing that for z → 0,

zνKν(z) = 2ν−1Γ(ν)

[

1 − z2

4(ν − 1)
+ O(z4)

]

,

and reads

ρ(R) = − 2

(2πR)dΩd−1
Re

[

Lid(e
iθ) − 2π2 Lid−2(e

iθ)

d − 2
(mR)2 + O(mR)4

]

,

where

Lin(z) ≡
∞
∑

k=1

zk

kn
, Ωd−1 ≡ 2πd/2

Γ(d
2)

,

Lin(1) = ζ(n), Lin(−1) = (21−d − 1)ζ(n) and ζ(n) is the Riemann zeta-function. Notice

also that the first corrections to the massless limit is negative and proportional to (m R)2.

Analogously for m → ∞, using

zνKν(z)
z→∞−−−→

√

π

2
zν− 1

2 e−z ,

we get

ρ(R)
m→∞−−−−→ −(mR)

d−1

2

(2πR)d
e−2πRm cos(θ) , (A.5)

which shows the exponential suppression for mR > 1.

B. More vacua

B.1 Other 3D SM vacua

In section 2 we showed how Casimir contributions to the effective potential of the radion

may determine a non trivial vacuum, actually a continuum, at the micron scale. One can

now ask what happens at shorter distances. For smaller sizes of the radius the neutrinos

are effectively massless and since the number of fermionic degrees of freedom is larger than

the number of bosonic ones, with periodic boundary conditions the scalar potential grows,

independently of the value for the Wilson loop. Nothing new happens until the size of

the radius approaches the Compton wavelength of the electron. At this point also the

electron d.o.f. start to be important. Moreover, since the electron is charged, also the

Wilson loop will start receiving important contributions: for θ = 0 the contribution to the

effective potential is positive and it continues to grow; For θ = π, on the other hand, the

contributions from the fermions is negative, the potential starts decreasing, developing a

saddle point at R ∼ 1/me and θ = π. It seems that the structure of the SM potential is

getting more and more interesting.

Because in three dimensions the electromagnetic coupling is relevant, one could worry

that at large distances the theory becomes strongly coupled and the calculation breaks

down, however, it is easy to check that, as long as the 4D coupling is perturbative, this

happens only at distances parametrically larger than the radius, and the calculation is

always within the regime where it can be trusted.
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θ g, γ ν e− µ− π K η8

M 0 −4 2 6 10 7 3 2

M π −4 2 −3/2 −5 −17/4 −9/2 −11/2

D 0 −4 8 12 16 13 9 8

D π −4 8 9/2 1 7/4 3/2 1/2

Table 1: Total number of d.o.f. after each threshold weighted with the factors ∓1 for bosons or

fermions and with 1 or −7/8 for charged fields if the Wilson loop value is θ = 0 or π respectively.

The two cases refer to Majorana (M) and Dirac (D) neutrino. A change in sign signals a stationary

point.

For smaller radii more and more states come in, changing at each stage the behavior

of the potential. If we define the single bosonic contribution to the Casimir energy as

V
(1)
C [R,m, θ] ≡ −r3 m4

πR2

∞
∑

n=1

cos(n θ)

(2πR m n)2
K2 (2πR m n) ,

the full effective potential will then read

V =
2πr3Λ4

R2
+

∑

a

(−1)Fana V
(1)
C

[

R, ma, 2π

(

qaAφ +
1 − za

2

)]

, (B.1)

where: the sum goes over the whole SM spectrum from massless states to the QCD pseudo-

Goldstone bosons (after which the theory becomes non-perturbative), Fa = 0, 1 if the a-th

state is bosonic or fermionic respectively, na counts the d.o.f. of the a-th state (1 for scalars,

2 for massless vectors, 4 for Dirac fermions. . . ), ma is the mass, qa is the absolute value

of the electric charge normalized to that of the electron e, Aφ is the Wilson loop modulus

and za = 0, 1 for periodic or antiperiodic boundary conditions.

Because of the asymptotic behavior of VC (eq. (A.5)), as long as R is away from

threshold regions (∼ 1/ma) the total contribution to V is just the sum of the massless

contributions from states that are lighter than 1/R. All these contributions are the same

up to a constant factor that depend on the number of d.o.f., the periodicity of the field

(also due to a non-trivial Wilson loop) and on the fermionic number of the state (Fa). Just

looking at these factors one can check the overall sign of the contribution for each R, which

determines the derivative of V with respect to R, thus the presence of stationary points.

In table 1 we reported such counting for periodic boundary conditions, which shows that

besides the neutrino vacuum and a saddle point at the electron scale no other stationary

points show up until R ≈ Λ−1
QCD.

At this point the perturbation theory breaks down and we cannot trust the formula for

the potential (B.1) anymore. In order to study the radion potential around the QCD scale

one would need a non-perturbative analysis, using, for instance, lattice QCD simulations.

So at the moment we cannot say whether other SM vacua are present in this region for

the radion. However, at smaller distances, the strong interaction becomes weak and we

can restart using perturbative formulae for our study. This times counting the elementary

d.o.f.: gluons, quarks. . .
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At this point, however, the structure of the effective potential gets much more involved.

First of all, quarks bring fractional charges that, at fixed radius, produce more than one

local minima for the Wilson loop. Second, also gluons can develop non-trivial Wilson loops.

There are actually two more moduli (G
(1,2)
φ ) to be considered, associated to the generators

of the Cartan subalgebra of SU(3). Both quarks and gluons generate, at the quantum

level, non-trivial contributions to the scalar potential for these two fields. If one, or both

of them, develop a non-vanishing expectation value than the SU(3) color group breaks

spontaneously into SU(2) × U(1) or U(1) × U(1). The effective potential now read

V =
2πr3Λ4

R2
+

∑

a

(−1)FanaVa ,

where for gluons

Va = 2V
(1)
C [R, 0, 0] + 2V

(1)
C

[

R, 0, 2π
(

G
(1)
φ − G

(2)
φ

)]

+ 2V
(1)
C

[

R, ma, 2π
(

2G
(1)
φ + G

(2)
φ

)]

+ 2V
(1)
C

[

R, ma, 2π
(

G
(1)
φ + 2G

(2)
φ

)]

,

while for the other fields:

Va = V
(1)
C

[

R,ma, 2π

(

qaAφ + g G
(1)
φ +

1 − za

2

)]

+ g V
(1)
C

[

R,ma, 2π

(

qaAφ + g G
(2)
φ +

1 − za

2

)]

+ g V
(1)
C

[

R,ma, 2π

(

qaAφ − g G
(1)
φ − g G

(2)
φ +

1 − za

2

)]

,

where g = 1 (or 0) if the field is (or is not) a quark. The potential became a highly non-

trivial function of the radion and the three Wilson loops (Aφ, G
(1,2)
φ ) and the search for

stationary points becomes much more involved.

Above the weak scale one would need to know also the details of the electro-weak

symmetry breaking sector and, eventually, of its extension, as well as to take into account

the effects from the Wilson loop of the weak, and eventually others, gauge bosons.

B.2 3D vacua in standard model extensions

Until now we restricted our discussion to the bare Standard Model action, dressed up

just with General Relativity, cosmological constant and neutrino masses. If there are new

light d.o.f., which for any reasons escaped direct and indirect search, the structure of the

vacua may change dramatically. Let us rapidly discuss some of the possibilities. Clearly

sterile neutrinos, light scalars interacting gravitationally or vector fields with very small

couplings would have important effects on the analysis. String theory, and in general extra-

dimensional theories, usually produce, after the stabilization of the moduli, a plethora of

light scalar fields, which interacts mainly gravitationally. The presence of such fields may

alter the form of the radion potential, removing, for instance, the neutrino minima and/or

creating new minima at higher scales.
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More interesting would be the presence of an axion “a”. Indeed, besides the usual

Casimir contribution, its shift symmetry could be used to switch on a flux for its field

strength along the compact dimension

∮

S1

da = f .

In this way the following extra contribution to the effective potential would arise

f2 r3

4πR4
.

In general the shift symmetry of the axion is broken to a discrete subgroup, which quantizes

the flux f = nfa in units of the axion decay constant fa. For the QCD axion, if it exists,

cosmological bounds set fa ∼ 109 ÷ 1012 GeV (see e.g [2]). In this case a non-trivial flux

would wipe out all Casimir vacua with R0 & f−1
a , while vacua with R0 smaller than this

scale will remain because Casimir energy dominates over the flux in this region. Moreover,

each of the surviving vacuum will be replicated n times, with n ∼ 1/(R0fa), each of the

replica with a different flux label. Besides the fluxes, also the Casimir contribution from the

QCD axions can lead to interesting consequences. Notice indeed that the actual limits on

the QCD axion mass are ma ∼ 10−6÷10−2 eV [2], right on the neutrino-vacuum scale. The

presence of an axion in this range would increase the probability to find a vacuum also in

the case of Dirac neutrino. Indeed with normal hierarchy the bounds on the lightest Dirac

neutrino in order to have a local minimum are weakened to mν1
& (4.85 ÷ 6.4) · 10−3 eV,

while with inverted hierarchy an AdS minimum would always exist, also in the Dirac case.

Another possible source of modification of the effective radion potential could be su-

persymmetry (SUSY). At low energy a light goldstino or gravitino would clearly affect the

structure of the minima. The fact that at high energies the fermionic and bosonic d.o.f.

are the same because of SUSY suggests the possibility to have new vacua at the SUSY-

breaking scale. Moreover at higher energies all the contributions to the Wilson loop would

disappear again leaving a number of approximate moduli in the effective theory.

Finally, even without going out of the SM there are other ingredients that can be

used to find other vacua, like modifying the boundary conditions with discrete and/or

continuous global symmetries like the fermionic Z2 symmetry, B − L. . . or by considering

compactifications on more than one dimension. The latter possibility will be explored in

the next sections. As we will see the analysis will be a little subtler than in the case of

toroidal compactifications in higher-dimensional models, for in our low-dimensional setups

several degrees of freedom will not be dynamical. We want to see what is the analogue of

looking for minima in the radion potential for finding (meta)stable vacua.

B.3 2D SM vacua

Let us start by compactifying two spatial dimensions on a two-torus. The torus can be

parameterized as usual by the area A and by the complex modulus τ = τ1+iτ2, see figure 9.
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ρ

1

τ 2

ρ1

ρ2

ρ3
Y

X1

Z

1
X

Y

τ

τ

τ

Figure 9: Left: Standard parameterization of a two-torus. The spatial metric is flat in the X-Y

plane. The torus is defined by identifying points that differ by integer combinations of the two

blue vectors, (1, 0) and (τ1, τ2). Right: Adding a third dimension Z and another vector ρ gives an

analogous parameterization for a three-torus.

Calling X2 and X3 the compact coordinates with periodicity 1, Xi ∼ Xi + 1, the

metric takes the form [18]

ds2 = gαβdxαdxβ + AγijdXidXj , (B.2)

with i and j labeling the compact directions, α and β labeling the non-compact directions,

and

γij =
1

τ2

(

1 τ1

τ1 |τ |2

)

. (B.3)

Notice that γij has unit determinant, so A really measures the area of the torus. For

simplicity we are not including the “graviphotons” gα2 and gα3 in the metric above —

their inclusion would not qualitatively change the picture.

We dimensionally reduce the 4D Einstein-Hilbert action by imposing that the fields

gαβ , A, and τ only depend on the non-compact coordinates (t, x). We get

S =

∫

d2x
√−g(2)

[

1

2
M2

4

(

AR(2) +
A

2τ2
2

|∂ατ |2
)

− V (A, τ)

]

, (B.4)

where we included a potential energy for A and τ , coming from diverse sources like those

studied throughout the paper.

Notice that if we imagine starting from 3D rather than 4D and compactifying one

dimension on a circle, we end up with the same action as above for the radion field R,

S =

∫

d2x
√−g(2)

[1

2
M3 RR(2) − V (R)

]

, (B.5)

and obviously no τ degrees of freedom. Therefore everything we say in this section is readily

exportable to this case as well, and in particular it applies to the 3D → 2D interpolations

discussed in section 4.

– 35 –



J
H
E
P
0
6
(
2
0
0
7
)
0
7
8

General analysis. Like the radion in a compactification from 4D to 3D, A does not have

a kinetic term on its own. But unlike in the radion case, we now cannot demix A from the

2D metric by means of a suitable conformal transformation. To see this and in order to

get some intuition on the dynamics of the system, it is instructive to work in D = 2 + ǫ

dimensions. Then the needed conformal transformation for going to Einstein frame is

gαβ = A−2/ǫĝαβ . (B.6)

This demixes A from the metric and generates a kinetic term for A. The action becomes

S2+ǫ =

∫

d2x
√

−ĝ(2+ǫ)

[

R̂(2+ǫ) +
1

ǫ

(∂αA)2

A2
+

|∂ατ |2
2τ2

2

− A−(2+ǫ)/ǫV (A, τ)

]

, (B.7)

where for notational convenience we set 1
2M2

4 = 1. This procedure is obviously singular

for ǫ → 0, but the divergence of the A kinetic term suggests that in D = 2 fluctuations of

A are decoupled. Indeed the canonically normalized area field φ = 1√
ǫ
log A/A0 becomes a

free field when we send ǫ to zero,

Lφ = (∂φ)2 − A
− 2+ǫ

ǫ

0 e
− 2+ǫ√

ǫ
φ · V (e

√
ǫφ, τ) → (∂φ)2 , (B.8)

and the corresponding fluctuations in the area vanish, A = A0 e
√

ǫφ → A0.

The ‘vacua’ are the minima of the effective potential Veff = A−(2+ǫ)/ǫV , which corre-

spond to points where ∂τ1,2
V = 0 and

2 + ǫ

ǫ
V = A∂AV . (B.9)

In the ǫ → 0 limit vacua are characterized by a vanishing V . Einstein’s equations give us

the curvature of these vacua,

Ĝαβ = −Veff gαβ ⇒ R̂(2+ǫ) =
2 + ǫ

ǫ
A−(2+ǫ)/ǫV = A−2/ǫ∂AV . (B.10)

Although the Einstein-frame curvature goes to zero for vanishing ǫ, the curvature in the

original conformal frame is finite, R(2) = ∂AV . So it is ∂AV rather than V itself that plays

the role of a cosmological constant.

Notice that for small but finite ǫ the curvature of the effective potential on vacuum

solutions is

∂2
AVeff = A−(2+ǫ)/ǫ

[

− (6 + 2ǫ)

ǫ

∂AV

A
+ ∂2

AV

]

≃ −6

ǫ
A−2/ǫ · ∂AV . (B.11)

Since de Sitter vacua correspond to positive ∂AV while Anti-de Sitter ones have negative

∂AV , we conclude that the former sit at maxima of the effective potential and are therefore

unstable, while the latter are stable minima. This is to be contrasted with the higher-

dimensional cases, where dS/AdS vacua can be either local maxmima or minima. Of course

when we send ǫ to zero the area A decouples — as we saw the canonically normalized field

sees no potential at all in the D = 2 limit — and the de Sitter vacua are stable as well.

Still this could be the formal reason why in interpolating from 3D to dS2 one ends up
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with solutions that have the interpretation of “top of the hill” inflation, as we found in

section 4.6.

The analysis we just sketched gives indeed the correct results, as we will now see by

analyzing directly the action (B.4). We first want to characterize the vacua. Vacuum

solutions are solutions in which the moduli A and τ have constant vev’s, so we set to zero

all gradients in the field equations. A appears in the action (B.4) as a Lagrange multiplier.

Variation with respect to A yields the equation

R(2) = ∂AV , (B.12)

which determines R(2). The metric too is non-dynamical in 2D. In fact the variation of

R(2) is a total derivative, and Einstein’s equations are thus a constraint on the matter

sector,

V = 0 . (B.13)

Finally, variation with respect to τ1,2 yields a standard stationarity condition,

∂τ1,2
V = 0 . (B.14)

We thus see that 2D vacua are points in the A-τ space in which V vanishes and is station-

ary with respect to τ . Then ∂AV determines the effective two-dimensional c.c., through

eq. (B.12).

We now study the stability of such vacua against small fluctuations. For simplicity we

consider just the Minkowski case, that is we assume ∂AV = 0 on the vacuum solution. The

analysis can be easily extended to the dS and AdS cases. We perturb the vacuum with

small fluctuations hαβ, δA, δτ1,2. The linearized field equations coming from varying the

action with respect to A, gαβ , and τ read respectively

δR(2) − m2
AA δA − m2

Aτa
δτa = 0 (B.15)

∂α∂βδA − ηαβ ¤δA = 0 (B.16)

−c¤δτa − m2
τaA δA − m2

τaτb
δτb = 0 (B.17)

where the mass matrix m2 is given by m2
φiφj

= ∂φi
∂φj

V , c is the combination A/τ2
2 evalu-

ated on the vacuum, and we made use of the vacuum equations above. Also all contractions

are done by means of the background metric ηαβ. Eq. (B.15) is not a propagation equation

for the metric, but rather it is a constraint. This is because in two dimensions the Ricci and

Riemann tensors are both determined by the Ricci scalar R(2), with the appropriate tensor

structures given by the metric. Thus the only invariant quantity is R(2), and knowing R(2)

uniquely determines the metric up to gauge transformations. Therefore eq. (B.15) fixes

the metric as a function of the other fields. Eq. (B.16) is not dynamical either. In fact its

trace imposes ¤δA = 0, which plugged back into eq. (B.16) itself gives

∂α∂βδA = 0 . (B.18)

This constrains δA to be a linear function of xα; in particular no localized perturbation

can be given as an initial condition for δA. In studying the stability of the system against
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local perturbations we thus have to set δA = 0. We are then left with eq. (B.17) with

δA = 0, which describes a stable system if and only if the mass matrix m2
τaτb

is positive

definite. In conclusion, in order for a 2D vacuum to be stable it must be a minimum of the

potential along the τ1, τ2 directions.

The real world. So far our discussion has been completely general. We now consider

the case of the Standard Model with a small cosmological constant Λ4. Minimally, the

two-dimensional potential has a positive contribution from the c.c.,

VΛ = Λ4 A , (B.19)

as well as negative and positive contributions from the Casimir energy of bosons and

fermions, respectively. The computation of the Casimir energy on the torus proceeds

analogously to the cylinder case of appendix A: one writes the two-point function as a sum

over images and subtracts the UV divergent part; then the Casimir Tµν is just given by

proper derivatives of the resulting Green’s function in the limit where the two points are

brought together. The result in 4D for a massless boson is of the form (see e.g. ref. [18])

ρCasimir ∝ − 1

A2

∑

n,m

′ 1

|n − mτ |4 , (B.20)

where the primed sum extends from −∞ to +∞ excluding the case (n,m) = (0, 0). After

dimensional reduction this gives a contribution to the two-dimensional potential VCasimir =

ρCasimirA. For massless fermions the result is the same, apart from the overall sign which

is positive. For massive particles the result is obviously much more complicated, and we

cannot simply model it with a step function like in the cylinder case: for instance for a

square torus we could say that a massive particle does not contribute to the Casimir energy

until the area A drops below 1/m2, and after that it contributes like a massless particle,

but for a general torus the combined dependence of this threshold on A and τ will be more

involved.

We will not attempt here a detailed analysis of the Casimir energy in the SM as a

function of the torus moduli in order to find stable 2D vacua. There is however a simple

situation that we can readily study. Suppose that starting from 4D we first compactify

z stabilizing the radius at Rz ∼ 1 mm, thanks to the interplay between the c.c. and the

Casimir energy as described in section 2. Then we compactify another dimension, say

y, on a much larger circle, so that we can consistently use the 3D effective theory. We

want to see if in this situation we can find a stable vacuum. In the 3D theory we have a

cosmological constant Λ3 and, among other things, a massless photon. We can then turn

on a constant electric field along the (non-compact) x direction, E = F0x; alternately we

can turn on an electric field for the graviphoton. Such an electric field does not break 2D

Lorentz invariance in the non-compact dimensions, since Fαβ ∝ ǫαβ is Lorentz-invariant.

Equivalently, in 3D a 1-form is dual to a scalar φ, and a constant electric field along x

corresponds to a constant ∂yφ = E. So the case we are studying is technically the lower

dimensional analogue of the axion wrapped around the circle of section B.2. The electric

field gives a positive contribution to the 2D energy density that scales like f2/RzRy, where
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Ry is the physical radius of the y dimension and f = E ·RzRy is the conserved flux. Then

for large Ry and f the Casimir energy coming from the compactness of y is completely

negligible with respect to this classical contribution to the potential.

The full 2D potential we consider is therefore

V = Λ3Ry +
f2

RzRy
. (B.21)

Recall that 2D vacua are characterized by an overall vanishing potential energy. Therefore

in the presence of a flux f we only get a vacuum if the 3D cosmological constant is negative,

which could well be the case for the SM as we argued in section 2. In this case the radius

is given by

Ry =
f

√

Rz|Λ3|
= Rz

f

ε
, (B.22)

where we defined the quantity ε =
√

R3
z|Λ3|. Without fine-tunings of the neutrino masses

we expect ε to be of order one. However as we will soon see for our approximations to be

self-consistent we will have to assume ε ≪ 1. The curvature of this vacuum is determined

by 2
M3

∂RyV , where the 3D Planck mass is M3 = Rz · M2
4 ; we thus get

R(2) =
2

M2
4

1

Rz
∂RyV = − 4

M2
4

ε2

R4
z

(B.23)

independent of f . The flux f is quantized in units of the 4D electric charge e , so we have a

discretum of different AdS2 vacua parameterized by f , all with exactly the same curvature

radius, which is roughly 1/ε times larger than our Hubble scale.

For our approximations to be self-consistent we first have to assume that Ry ≫ Rz,

which requires f ≫ ε. Then we have to impose that the electric field does not destabilize

the 3D radion, Rz: after all Rz was stabilized thanks to the Casimir energy, which is a

small quantum effect. Rz is still stable if the “force” ∂RzV is smaller than the typical

curvature scale of the stabilizing potential for Rz, so that the electric flux only moves Rz

slightly away from the minimum. Notice that Λ3 is implicitly a function of Rz, but by

assumption Rz is at a minimum of Λ3, so we get no force from that piece of the potential.

We have

∂RzV = − f2

R2
zRy

= −f ε

R3
z

, (B.24)

to be compared with ∼ 1/R3
z . We thus have to impose f ≪ 1/ε, which combined with

the previous requirement, f ≫ ε, tells us that our approximations are self consistent only

if ε is much smaller than one, i.e. if the 3D cosmological constant is unnaturally small.

Therefore in general we don’t expect these very asymmetric compactifications to give rise

to stable vacua — one should instead consider more symmetrically shaped tori, for which a

full analysis of the Casimir energy as a function of the torus moduli is necessary. However

if the required fine-tuning is fortuitously realized in the real world and ε is actually very

small, then there exist N ∼ 1/(εe) two-dimensional AdS vacua, parameterized by f , all

with the same 2D curvature length.

– 39 –



J
H
E
P
0
6
(
2
0
0
7
)
0
7
8

B.4 No 1D “vacua”

We now imagine to compactify all three spatial dimensions on a three-torus. For the

discussion that follows the parameterization we choose for the torus is not important, but

for concreteness let us parameterize it with the overall (dimensionful) scale factor a and

the shape moduli Φ = (τ1, τ2, ρ1, ρ2, ρ3) defined in figure 9. Then if the compact directions

have periodicity 1, the 4D metric reads

ds2 = −N2dt2 + a2γijdXidXj , (B.25)

with

γij =
1

(ρ3 τ2)2/3







1 τ1 ρ1

τ1 τ2
1 + τ2

2 ρ1τ1 + ρ2τ2

ρ1 ρ1τ1 + ρ2τ2 ρ2
1 + ρ2

2 + ρ2
3






. (B.26)

Notice that det γij = 1 as before, so the volume of the torus is a3. Dimensional reduction

yields the 1D action

S =

∫

dt
1

2
M2

4

[

− 6 ȧ2a

N
+

a3

N
Φ̇ · K(Φ)Φ̇

]

− N V (a,Φ) , (B.27)

where V is the sum of the 4D cosmological constant, Casimir energy density, and possibly

other sources of potential energy, all multiplied by the volume of the three-torus, and K(Φ)

is a 5×5 matrix that depends on the shape of the torus and whose explicit form we spare

the reader. Its positivity can be readily checked for very symmetric configurations, like

the rectangular torus τ1 = ρ1 = ρ2 = 0. More generically, the Φ’s parameterize the coset

manifold SL(3)/SO(3), and being SO(3) the maximal compact subgroup of SL(3), the

corresponding non-linear sigma model has positive definite kinetic energy.

Generically the action (B.27) describes a cosmology. N appears as a Lagrange multi-

plier and its equation of motion is the Hamiltonian constraint H = 0, which is nothing but

the Friedman equation

H =
1

2
M2

4

[

− 6 ȧ2a + a3 Φ̇ · K(Φ)Φ̇
]

+ V (a,Φ) = 0 , (B.28)

where we fixed the gauge N = 1. We can equivalently set N = 1 directly in the Lagrangian,

L =
1

2
M2

4

[

− 6 ȧ2a + a3 Φ̇ · K(Φ)Φ̇
]

− V (a,Φ) , (B.29)

and supplement the system by the constraint that the total Hamiltonian vanishes,

eq. (B.28). Since the Hamiltonian is conserved on the equations of motion of L, this

is just a constraint on the initial conditions. Notice that a enters the action with negative

kinetic energy.

Usually cosmological solutions evolve with time. In our case this time evolution would

correspond to a decompactification, or to a big crunch, or to some anisotropic Kasner-like

solution. Instead we are looking for vacua — i.e. static solutions in which the moduli

are stabilized. It is evident from the Lagrangian above that a static solution must be an
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extremum of the potential, but then to have zero total energy the potential itself should

vanish at the same point. So the existence of a truly static solution requires a perfectly

tuned potential.

More realistically, in our case we expect V to develop non trivial features at the micron

scale with typical energies of order µm−1. So let us assume that there is a stationary point

of V at a0 ∼ µm, Φ0 ∼ 1, but for reasons that will soon become clear let’s assume that the

potential itself at the stationary point is somewhat smaller than the typical energy scale:

V0 ∼ ε2 µm−1 with ε ≪ 1. Then in a neighborhood of (a0,Φ0) we can expand the La-

grangian at second order in the displacements δa, δΦ. The resulting quadratic Lagrangian

describes a set of harmonic oscillators, provided that the Hessian of the potential — the

‘mass matrix’ — have the right signature. In particular, since the Φ’s have a positive

definite kinetic energy while that of a is negative, V should be positively curved along the

Φ directions and negatively curved along a.2 If these conditions are met, then the typical

oscillation frequency in all directions is of order of our present Hubble rate H0—assuming

that the curvature scales of V are of order µm−1.

The Hamiltonian constraint fixes the initial oscillation amplitudes. The total energy

of the oscillators should vanish, taking into account also the offset V0 ∼ ε2 µm−1. So

the typical amplitudes are δa ∼ ε µm, δΦ ∼ ε. If ε is small the oscillations are small

compared to the typical variation scales of the potential, and the perturbative analysis we

are sketching here is justified. In this case we have an almost static micron-sized universe

that undergoes small periodic oscillations in size and shape on a timescale of order 1010

years! Note that a classical description of this motion is justified since the amplitudes of

oscillation are much larger than the quantum uncertainties, with (δquantuma/δclassicala)2 ∼
µm × H0.

Of course the fact that δa has negative energies signals that the system is unstable

once interactions between the two sectors — the “inverted” oscillator and the normal ones

— are taken into account. The two sectors can start exciting each other while keeping

the total energy fixed, and this happens classically already at perturbative level. However

unlike in relativistic field theories with ghosts where the rate of such instability is formally

infinite because of Lorentz symmetry, here the instability is slow and its rate can be reliably

computed in perturbation theory.

Despite the appearance of the Planck scale in front of the kinetic terms, the only

suppression of interactions in our case comes from the smallness of ε—i.e. interactions are

not Planck-suppressed. This is because we are studying large classical oscillations, much

larger than the typical quantum spread of the ground-state wave-function. Then in the

Lagrangian (B.29) we can reabsorb M4 into a redefinition of time. This only changes the

overall normalization of the action, which classically is arbitrary. With this redefinition,

there is no small parameter in the Lagrangian, and the importance of interactions is only

controlled by the oscillation amplitude, ε. Therefore the instability rate is suppressed with

2This is true if the mixed second derivatives ∂a∂ΦV are negligible. The general condition for having only

oscillatory solutions is that the Hessian of V with respect to Φ and to i · a be positive definite.
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respect to the oscillation frequency by positive powers of ε,

Γ ∼ H0 [ε + ε2 + . . . ] . (B.30)

It is easy to convince one’s self that the leading term is there only if resonance phenomena

are possible, i.e. if two frequencies are tuned to be equal. Barring this possibility, the in-

stability rate is generically of order Γ ∼ ε2H0. A detailed analysis of the classical dynamics

of two coupled harmonic oscillators, one of which has negative energy, confirms this quick

estimate.

In conclusion, if the potential energy at the stationary point is much smaller than

the typical energy scales and the mass matrix has the right signature, than there exists

a micron sized solution that slightly oscillates in size and shape with a period of order

H−1
0 . Eventually it is unstable against decompactification or crunching, but on a longer

timescale of order H−1
0 /ε2. If instead there are no special tunings in the potential, then the

instability time is of order of the would-be oscillation frequency and there is no conceptual

difference between the situation we are describing and a standard cosmological solution.
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